Gemelli

Fondazione Policlinico Universitario Agostino Gemelli IRCCS Università Cattolica del Sacro Cuore

Fungal Infections non-Aspergillus and non-Candida

Livio Pagano UOC di Ematologia Geriatrica ed Emopatie Rare

Roma

EUROPEAN HEMATOLOGY ASSOCIATION

Opportunistic Fungi

Basidiobolus

....

Epidemiology

- On the increase
 - Ever expanding populations at risk
 - New immunotherapeutic treatments
 - Prolonged immunosuppression and unexpected/understudied off-target effects
 - Selection pressure due to the increasing use of broad spectrum antifungal agents as prophylaxis.
- Mortality is high
 - Late recognition
 - Difficulty in diagnosis
 - Limited currently available therapeutic options

Epidemiology and Diagnosis of Mucormycosis: An Update

Skiada et al. J Fungi 2020

	Characteristics of Studies				Risk Factors/Underlying Diseases (%)								
Reference	Countries of Origin of Cases	Prospective Study	Multicenter Study	Time Period	Total no. of pts	DM	HM	HSCT	SOM/ SOT	AI/CO	Trauma #	HIV	None
Roden et al. 2005 [8]	Global	No	Yes	1940-2003	929	36	15.8	5	1/7	1	8#	2	19
Jeong et al. 2019 [9]	Global	No	Yes	2000-2017	851	40	32		1/14	3/33	20		18
Skiada et al. 2011 [14]	Europe	Yes	Yes	2005-2007	230	17	44		5/4	44	17	2	8
Lanternier et al. 2012 [10]	France	No	Yes	2005-2007	101	23	50	12	2/3	13	18	1	1
Pagano et al. 2009 [27]	Italy	Yes	Yes	2004-2007	60	18	62	3	8/	3/50	2	17	3
Kontoyiannis et al. 2016 [18]	USA	No	Yes	2005–2014	555	52	40	11	6/15	NA	4	2	NA
Nucci et al. 2019 [28]	South America	No	Yes	1960–2018	143	42	11	2	/13	NA	20	2	7.7
Corzo-Leon et al. 2017 [12]	Mexico	No	Yes	1982–2016	418	72	17		1/	1	2.3	0.7	4
Chakrabarti et al. 2006 [5]	India	No	No	2000–2004	178	73.6	1.1		/0.6	1.7	7.3	0.6	11.8
Chakrabarti et al. 2009 [20]	India	Yes	No	2006-2007	75	44	9		/5	29	11	1	3
Prakash et al. 2019 [29]	India	Yes	Yes	2013-2015	303	56.8	6		/6	9.9	10	-	10.5
Patel et al. 2020 [11]	India	Yes	Yes	2016-2017	465	74	8	1	1.5/6.5	/3.7	6.9	-	11.8
Dolatabadi et al. 2018 [30]	Iran	No	Yes	2008-2014	208	75	3	2	3/3	NA	4	-	2
Vaezi et al. 2016 [31]	Iran	No	Yes	1990–2015	98	48	6	1	/23	NA	1	-	10
El Zein et al. 2018 [32]	Lebanon	No	No	2008-2018	20	35	65		/5	70	-	-	-
Kennedy et al. 2016 [33]	Australia	No	Yes	2004-2012	74	27	48.6	18	3/11	12/ 53	23		11
Stemler et al. 2020 [34]	Middle East and North Africa	No	Yes	1968-2019	310	49.7	16.5		2/17	21.6	12	0.3	5.8

Penetrating trauma and surgery. SOM = Solid organ malignancy, SOT = Solid organ transplantation, AI = Autoimmune disease, CO = corticosteroids.

COVID-19—associated mucormycosis: a systematic review and metaanalysis of 958 cases

Ozbek et al, CMI 2023

Laboratory diagnostics

- Colonization by Zygomycetes seems definitely rare (it's easier to isolate a *Rhizopus* as a contaminating agent than a *Mucor*)
- Culture studies show a low sensitivity (more than 75% of cases with histologically diagnosed zygomycetes pneumonia don't develop fungi at cultures)
- Reduced growth in culture
- Solution Solution

Radiological Pictures

Aspergillus **Mucormycete** ces But "reversed halo sign" may be suggestive Legouge et al, CID 2014

Cut it out! Thoracic surgeon's approach to pulmonary mucormycosis and the role of surgical resection in survival

- 12 patients treated with surgery
- 13 with only antifungal

Multani et al, Mycoses 2019

Mucormycosis in South America: A review of 143 reported cases

	Brazil		Other South America	n countries	Total		
	Incidence (N = 59) n (%)	Mortality n (%) ^a	Incidence (N = 84) n (%)	Mortality n (%) ^a	Incidence (N = 143) n (%)	Mortality n (%) ^a	
Treatment (overall)							
Antifungal only	28 (47.5)	16 (57.1)	15 (17.9)	9 (60.0)	43 (30.1)	25 (58.1)	
Antifungal + surgery	21 (35.6)	5 (23.8)	50 (59.5)	12 (24.0)	71 (49.7)	17 (23.9)	
No antifungal treatment	10 (16.9)	10 ^ь (100.0)	19 (22.6)	17 ^c (89.5)	29 (20.3)	27 (93.1)	

Global Guideline for the Diagnosis and Management of Mucormycosis: An initiative of the ECMM in cooperation with ESCMID/EFISG

Population	Intention	Intervention	SoR	QoE
Any	To increase survival rates	Surgical debridement	Α	llu
Any	To cure and to increase survival rates	Surgery in addition to antifungal treatment	Α	llu
Any	To cure and to increase survival rates	Amphotericin B, liposomal 5-10 mg/kg	А	llu
Any	To cure	Isavuconazole PO/IV 3x200 mg d1-2, 1x200 mg/d from d3	В	llh
Any	To cure	Posaconazole DR tablet or IV 2x300 mg d1, 1x300 mg from d2	В	lltu
Any	To cure	Posaconazole oral suspension 4x200 mg/d or 2x400 mg/d	С	llu
Any	To cure	Amphotericin B, deoxycholate, any dose	D	1
Any	To cure	AmB formulation + caspofungin	С	Ш
Any	To cure	LAMB + caspofungin	С	llh
Any	To cure	LAmB + MICA or ANID	С	ш
Any	To cure	LAmB + POS DR tablet or iv	С	llu
Hema malignancy	To cure	LAMB + posaconazole	С	llu
Hema malignancy	To cure	AmB formulations + caspofungin	С	llu
Hema malignancy	To cure	L-AMB + caspofungin	С	llu
Hema malignancy	To cure	L-AMB + caspofungin + posaconazole	С	llu

Cornely et al, Lancet Infect Dis 2019

The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin

					Currently investiga
Antifungal agents	Fosmanogepix	Ibrexafungerp	Olorofim	Opelconazole	Rezafungin
Pathogens					
Cunninghamella					
Lichtheimia					
Mucor					

Ibrexafungerp and olorofim have no activity against Mucorales, while opelconazole seems effective

Rhizopus

Hoenigl et al, Drugs 2021

Variable activit

Scedosporium spp.

- Ubiquitous saprophytic hyaline moulds
- Found mostly in temperate climates
- Regional/geographical variation in incidence
- Most common
 - S. apiospermum species complex (SC)
 - S. apiospermum and S. boydii
 - S. aurantiacum

Risk factors

- Hematological malignancy
- HSCT
- T-cell immunodeficiency

Scedosporiosis and lomentosporiosis: modern perspectives on these difficult-to-treat rare mold infections

Neoh et al, Clin Micr Rev 2024

Scedosporiosis and lomentosporiosis: modern perspectives on these difficult-to-treat rare mold infections

Species	Scedosporium apiospermum	Scedosporium boydii
Disseminated IFDs	26%	35%
Fungemia	0%-4%	40%
Frequent localization in disseminated	Skin 67%	CNS 71%
IFDs	Lung 58%	Lung 57%
	CNS 33%	Skin 29%
Frequent location in localized IFDs	Osteoarticular/skin 46%	Lung 62%
	Lung 20%	Osteoarticular/skin 31%

Imaging

- Imaging
 - Determine the degree of dissemination
 - Modality is determined by site of infection
 - CT scan for chest vs. MRI for brain
 - Identify sites for biopsy
 - CT scan chest
 - No specific lesions that would differentiate it from other rare moulds
 - Determine response to treatment
 - Should be used in combination with microbiology results

Diagnosis

- Dissemination
 - Blood cultures
 - Skin
- Obtain specimens
- Microscopy
- Culture
 - Species identification
 - Susceptibility testing

- Histology
- MALDI-TOF MS
 - Genus level only
- Molecular-based
 - Not species specific
 - Not standardised
 - Panfungal on tissue samples
 - ITS/β-tubulin sequencing on cultures

Scedosporiosis and lomentosporiosis: modern perspectives on these difficult-to-treat rare mold infections

Marginally recommended

Olorofim for treatment of mould IFD in patients with limited or no treatment options: Results from a Phase 2b open-label study (NCT03583164, Study 32) Johan Maertens, GR Thompson, Andrej Spec, Fariba Donovan, Stephen Walsh, Lesley Fitton, Aaron Dane, Daniela Zinzi, John H. Rex, Sharon Chen. AAAM2024

	DRC-adjudicate n (d response rate ¹ %)	AC n(CM %)
	Day 42	Day 84	Day 42	Day 84
Dverall n = 202)	58 (28.7)	55 (27.2)	23 (11.4)	32 (15.8)
Aspergillus spp. n = 101)	35 (34.7)	34 (33.7)	18 (17.8)	26 (25.7)
omentospora prolificans n = 26)	11 (42.3)	11 (42.3)	3 (11.5)	3 (11.5)
icedosporium spp. n = 22)	8 (36.4)	5 (22.7)	2 (9.1)	2 (9.1)
scopulariopsis spp. n = 6)	5 (83.3)	5 (83.3)	0	0
Dther Olorofim-susceptible ungi n = 8)	1 (12.5)	2 (25.0)	0	1 (12.5)
Coccidioides spp. n = 41)	0	0	0	0

Neoh et al, Clin Micr Rev 2024

Lomentospora prolificans

- Dematiaceous hyphomycete
- Now phylogenetically distinct from Scedosporium spp.
- Found in the soil in hot and dry climates
 - Australia, Spain and USA

Risk factors

Hematological malignancy

HSCT

- Fungaemia and disseminated infection
- Solid organ transplant
 - Less likely that HSCT
 - 17% vs. 39%; p=0.045
- Breakthrough infections on voriconazole

Crit Rev Microbiol 2019; 45: 1; Clin Microbiol Infect 2015; 21: 490.e1; Med Mycol 2009; 47: 359; Clin Infect Dis 2005; 40: 89

Diagnosis

- Dissemination
 - Blood cultures
 - Skin
- Obtain specimens
- Microscopy
- Culture
 - Differentiate from Scedosporium spp. using cycloheximide

- Histology
 - Pigmented hyphae
- MALDI-TOF MS
- Molecular-based
 - Not standardised
 - Examined in the CF population mainly
 - Several methods
 - Broad-based assay with subsequent sequencing, hybridisation or microarray

Clinical characteristics and outcomes of invasive Lomentospora prolificans infections: Analysis of patients in the FungiScope[®] registry Jenks et al, mycoses 2020

Female sex	16 (39%)
Age (median, interquartile range)	65 (48-69)
Country case occurred	
Australia	17 (41%)
United States	11 (27%)
Germany	8 (20%)
Other ^a	5 (12%)
Underlying diseases/main risk factors	
Haematological/oncological malignancies	27 (66%)
Trauma/surgery	6 (15%)
Solid organ transplantation	3 (7%)
Other ^b	5 (12%)
Intensive care unit	6 (15%)
Site(s) of infection	
Disseminated infection	25 (61%)
Growth in blood culture	19 (46%)
Lung	18 (44%)
Eye	9 (22%)
Skin/deep soft tissue	5 (12%)
Bone	4 (10%)
Brain/central nervous system	5 (12%)

Breakthrough infection	24 (59%)
Antifungal treatment ^c	
Voriconazole ± other antifungals	31/40 (78%)
Terbinafine ± other antifungals	19/40 (48%)
LAmB ± other antifungals	15/40 (38%)
Antifungal combination therapy (vs monotherapy)	24/40 (60%)
Combination voriconazole + terbinafine ± other antifungals	16/40 (40%)
Surgery	7 (18%)
Outcomes ^d	
Progression, deterioration, or failure of antifungal treatment	23/40 (58%)
28-d overall mortality	21 (51%)
Death attributable to Lomentospora prolificans infection	21 (51%)

41 patients from 8 Countries mainly Australia and USA (California)

Scedosporiosis and lomentosporiosis: modern perspectives on these difficult-to-treat rare mold infections

Neoh et al, Clin Micr Rev 2024

Strongly recommended Moderately recommended Marginally recommended Olorofim for treatment of mould IFD in patients with limited or no treatment options: Results from a Phase 2b open-label study (NCT03583164, Study 32) Johan Maertens, GR Thompson, Andrej Spec, Fariba Donovan, Stephen Walsh, Lesley Fitton, Aaron Dane, Daniela Zinzi, John H. Rex, Sharon Chen. AAAM2024

	DRC-adjudicate	d response rate ¹	ACM	
	n (· '%)	n(%)
	Day 42	Day 84	Day 42	Day 84
Overall (n = 202)	58 (28.7)	55 (27.2)	23 (11.4)	32 (15.8)
Aspergillus spp. (n = 101)	35 (34.7)	34 (33.7)	18 (17.8)	26 (25.7)
Lomentospora prolificans (n = 26)	11 (42.3)	11 (42.3)	3 (11.5)	3 (11.5)
Scedosporium spp. (n = 22)	8 (36.4)			
Scopulariopsis spp. (n = 6)	5 (83.3)	5 (83.3)	0	0
Other Olorofim-susceptible fungi (n = 8)	1 (12.5)	2 (25.0)	0	1 (12.5)
Coccidioides spp. (n = 41)	0	0	0	0

Global guideline for the diagnosis and management of rare mould infections: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology and the American Society for Microbiology

Hoenigl et al, Lancet Infect Dis 2021

[Strongly re	commended	Mod	lerately recommended	Marginally recomm	ended	🔲 Recommended agair	nst
		First-line		First-line alternative	Second-line		Treatments to avoid	Salvage treatments
omentosporosis	Ve	oriconazole plus terbiı	nafine	Voriconazole	Isavuconazole, or posaconazole		L-AmB	Voriconazole

The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin

Hoenigl et al, Drugs 2021

Fusarium spp.

- Plant pathogen, soil saprophyte
- Inalation, ingestion, direct inoculation
- Includes F.solani (50% isolates), F.moniliforme, F.oxysporum

A wide spectrum of clinical manifestations

Diagnosis

- Because of their ubiquitous nature, however, isolation of *Fusarium* species in culture may be due environmental contamination.
- Therefore, the microbiologist and clinician must work together to interpret the results.
- Clues for clinically significant results are:
 - ☑ Fungi seen on direct stain of tissue.
 - ☑ Site of isolation and the host.
 - ☑ Same fungus from multiple specimens.
 - ☑ Multiple colonies from same specimen.

<u>In Tissue</u>

From Blood

Multiple Specimens

Diagnosis

- Histology
 - Stain with PAS or GMS
- MALDI-TOF MS
 - Research tool only
- Molecular-based
 - Several methods
 - Multi-locus sequence typing
 - Real-time PCR

- Galactomannan
 - Cross-reacts with *Fusarium*
 - Sensitivity and specificity
 - 83% and 67%
 - In 73% of cases positive before clinical signs
 - Prognostication ✓
- β-D-glucan
 - Sensitivity of 90% and specificity of 60%
 - 2 sequential tests with threshold
 >80 pg/mL

Invasive Fusariosis in Patients with Hematologic Diseases

Country	Setting	Number of Patients (Denominator)	Number of Cases	Incidence
Italy [30]	Adult patients with hematologic diseases	351 episodes of infection by molds	6	1.7%
Italy [1]	Adult patients with hematologic malignancies	11,802 patients at risk	15	0.1%
Italy [31]	Adult patients undergoing HCT	3228 patients at risk	3	0.1%; 0.2% in allogeneic and no case in autologous HCT
USA [12]	Adult patients undergoing HCT	1607 patients at risk	12	0.7%; 1.2% in allogeneic and 0.2% in autologous HCT
USA [32]	Cancer patients	Not reported	44	0.04 cases per 1000 patients-day in 1998 and 0.012 cases per 1000 patients-day in 2007–2008
Spain [28]	Hospitalized patients	Not reported	58	0.55 cases per 100,000 admissions
USA and Brazil [29]	HCT recipients (adults and children)	Not reported	61	Cases per 1000 HCT: 5.97 overall; 6.18 in Brazil, 5.89 in the USA; 4.21–5.0 in MRD, 2.28 in HLA-compatible MUD, 20.19 in MMRD, 1.4–2.0 in autologous
Brazil [33]	Adults and children with AML/MDS or HCT	937	23	1-year cumulative incidence: 5.2% in allogeneic HCT, 3.8% in AML/MDS, 0.6% in autologous HCT
Brazil [34]	Adults and children with AML/MDS, ALL or HCT	192	3	1.6% overall; 4.3% in AML/MDS, 2.0% in autologous HCT
Brazil [35]	Adult patients with hematologic diseases	980	17	1.7% overall; 3.1% in allogeneic HCT; 3.1% in acute leukemia

HCT = hematopoietic cell transplantation; MRD = matched-related donor; MUD = matched-unrelated donor; MMRD = mismatched-related donor; AML = acute myeloid leukemia; MDS = myelodysplasia; ALL = acute lymphoid leukemia.

Nucci et al, J Fungi 2021

	Fusariosis	Aspergillosis
Most common setting	Acute leukemia, induction remission and allogeneic HCT ¹	Acute leukemia, induction remission and allogeneic HCT
Mode of acquisition	Airways and skin at sites of breakdown	Airways
Hospital reservoirs	Air and water	Air and water
Clinical manifestations [44]		
Fever	Yes, 96%	Yes, 64%
Pneumonia	Yes, 50%	Yes, 89%
Nodules with halo sign	Yes, 23%	Yes, 62%
Centrilobular micronodules	Yes, 54%	Yes, 44%
Tree-in-bud infiltrates	Yes, 8%	Yes, 12%
Sinusitis	Yes, 38%	Yes, 64%
Skin lesions	Yes, 73%	No
Positive blood cultures	Frequent	Rare
Positive serum galactomannan [44]	Yes, 73%	Yes, 89%
Positive 1,3-beta-D-glucan	Yes	Yes

Invasive Fusariosis in Patients with Hematologic Diseases

¹ HCT = hematopoietic cell transplantation.

Nucci et al, J Fungi 2021

Global guideline for the diagnosis and management of rare mould infections: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology and the American Society for Microbiology

Hoenigl et al, Lancet Infect Dis 2021

[Strongly recommended Mode		rately recommended	Marginally recommende	Recommended against	
	F	irst-line	First-line alternative	Second-line	Treatments to avoid	Salvage treatments
Fusariosis		/oriconazole, or roriconazole plus L-AmB, or roriconazole plus ABLC	L-AmB, or ABLC	lsavuconazole, or posaconazole	D-AmB	Posaconazole

The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin

Hoenigl et al, Drugs 2021

Clinical features and prognostic factors of *Magnusiomyces* (*Saprochaete*) infections in haematology. A multicentre study of SEIFEM/Fungiscope Patients <u>N (%)</u> S. capitata S. clay

2010-2020 90 pts 75/90 blood infection

Patients	NI (0/)	S. capitata	S. clavata	
Characteristic	IN (70)	N(%)	N(%)	P value
Total patients	90	60(71%)	30(21%)	
Gender,				0.45
Male	44 (49%)	31(70%)	13(30%)	
Female	46 (51%)	29(63%)	17(27%)	
Age, years				.012
≥60 years	35(39%)	29(83%)	6(17%)	
<60 years	55(61%)	31(56%)	24(44%)	
Comorbidity				.71
Yes	35(39%)	24(68%)	11(31%)	
No	54(61%)	35(65%)	19(35%)	
Underlying HM				0.18
AML	50(65%)	34(51%)	16(33%)	
ALL	19(21%)	9(47%)	10(53%)	
NHL	13(16%)	9(69%)	4(31%)	
HL	2(2%)	2(100%)	0(0%)	
Others	6(6%)	6(75%)	0(0%)	
CVC				.58
Yes	71(79%)	46(65%)	25(35%)	
No	19(21%)	14(74%)	5(26%)	

Del Principe et al, mycoses 2023

FIGURE 1 Response to first-line antifungal therapy by different antifungal agents used. AT, antifungal therapy; L-AMB, liposomal amphotericin B.

FIGURE 2 Overall Mortality (OM) based on neutrophil recovery. Kaplan-Meier plot comparing OM of patients with recovery of neutrophils (continuous dark gray line) versus OM of patients without recovery of neutrophils (dotted gray line)

Del Principe et al, mycoses 2023

 β -1,3-D-Glucan and Galactomannan as Biomarkers for the Detection of Invasive *Geotrichum* and *Magnusiomyces* Infections: a Retrospective Evaluation

While BDG sensitivity was 65%, none of the sera was GM positive. This findingwas supported by in vitro experiments analyzing fungal culture supernatants: M. capitatus secretes significant amounts of BDG but not GM. Specificity was 96% for BDG and 100% for GM. BDG sensitivity is comparable to that of candidemia

Forster et al, JCM 2022

Global guideline for the diagnosis and management of rare yeast infections: an initiative of the ECMM in cooperation with ISHAM and ASM

Chen et al, Lancet Infect Dis 2021

Invasive infections due to *Saprochaete* and *Geotrichum* species: Report of 23 cases from the FungiScope Registry

Host factor	n=23 (100%)ª	Favourable response n (%)	Mortality n (%)
Chemotherapy	16 (70%)	6 (38%)	11 (69%)
Haematopoietic stem cell transplantation	8 (35%)	3 (38%)	5 (62%)
Diabetes mellitus	6 (26%)	3 (50%)	4 (67%)
Intensive care unit	5 (22%)	1 (20%)	4 (80%)
Chronic pulmonary diseases	3 (13%)	2 (67%)	1 (33%)
Chronic granulomatous disease	1 (4%)	1 (100%)	O (O%)
Chronic renal disease	1 (4%)	1 (100%)	O (O%)
Chronic alcohol abuse	1 (4%)	0 (0%)	1 (100%)
High-dose steroids	1 (4%)	O (O%)	1 (100%)
Solid organ transplantation	1 (4%)	0 (0%)	1 (100%)
Trauma	1 (4%)	0 (0%)	1 (100%)

Duran Graeff et al, Mycoses 2014

Geotrichum capitatum Trichosporon capitatum Blastoschizomyces capitatus Saprochaete capitata

Invasive Infections Caused by *Trichosporon* Species and *Geotrichum capitatum* in Patients with Hematological Malignancies: a Retrospective Multicenter Study from Italy and Review of the Literature

TABLE 2. Characteristics of the 396 cases of invasive *Trichosporon* spp. and *G. capitatum* infections in immunocompromised patients reported in the literature^a

Characteristic	Trichosporon spp. infection ^b ($n = 287$)	G. capitatum infection ($n = 99$)	T. pullulans infection (n = 8)	T. loubieri infection (n = 2)	
Sex (male/female) [no. of evaluable cases]	138/65 [203]	56/28 [84]	6/1 [7]	1/1 [2]	
Mean age (range) [no. of evaluable cases]	40 (1-78) [205]	44 (1–76) [80]	57 (47-65) [7]	50 (45–56) [2]	
Underlying disease or condition, no. of evaluable cases	266	96	8	2	
Hematological disease, no. of cases (%)	167 (62.8)	88 (91.7)	6 (75)	1 (50)	
Solid tumor, no. of cases (%)	18 (6.8)	3 (3.1)	1 (12.5)		
Organ transplant, no. of cases (%)	10 (3.8)	0 ` `	1 (12.5)		
Prosthetic cardiac valve, no. of cases (%)	10 (3.8)	2 (2.1)			
Peritoneal dialysis, no. of cases (%)	22 (8.3)	0			
HIV infection, no. of cases (%)	4 (1.5)	0			
Newborn, no. of cases (%)	15 (5.6)	1 (1.0)			
Burn, no. of cases (%)	5 (1.9)	0			
Other diseases or conditions, no. of cases (%)	15 (5.6)	2 (2.1)		1 (50)	

Girmenia et al, JCM 2005

Global guideline for the diagnosis and management of rare yeast infections: an initiative of the ECMM in cooperation with ISHAM and ASM

Geotrichum spp.

Chen et al, Lancet Infect Dis 2021

Global guideline for the diagnosis and management of rare yeast infections: an initiative of the ECMM in cooperation with ISHAM and ASM

Suspected and confirmed infections due to Geotrichum spp are emergencies and require rapid action Timely, rapid antifungal therapy and management is required for suspected and confirmed infections **Amphotericin B liposomal** Amphotericin B deoxycholate Voriconazole intravenously or by Surgical resection of localised 3-5 mg/kg per day 1 mg/kg per day mouth lesions 2×6 mg/kg per day on day 1; 2×4 mg/kg per day from day 2 With or without flucytosine intravenously or by mouth 4×25 mg/kg per day Response assessment Weekly, ≥14 days after past negative blood culture Progressive disease Recommendation Strong Moderate Change the antifungal class Marginal Supported by susceptibility Against

Geotrichum spp.

Chen et al, Lancet Infect Dis 2021

Key points

- A high level of suspicion is required
- Knowledge of the risk factors
- Prompt investigation with multiple tools
- Species identification critical to guide antifungal therapy
- Molecular tools are increasingly available and used for diagnosis
- Antifungal treatment is evolving
- Further research is required in the area of diagnostics and the development of further novel antifungal agents